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1. Introduction

Image processing and analysis (IPA) systems employ a wide

variety of techniques for image encoding, transformation, seg-

mentation, and property measurement. Many of these techniques

are suitable for efficient parallel implementation. This paper

defines some general classes of IPA algorithms, and indicates

how such algorithms can be implemented in parallel using vari-

ous types of "cellular" multiprocessor architectures.

IPA has a large and rapidly growing literature. There

are at least a dozen textbooks [1-12] covering major parts of

the subject, aside from books on specific topics and collec-

tions of papers. An annual bibliography (the most recent is

[13]), covering primarily the non-application oriented U.S.

literature, currently includes about 1000 references per year.

References on specific (classes of) algorithms will not be given

in this paper.

It was proposed about 25 years ago [14] that many IPA

algorithms could be implemented in parallel using a "cellular

array" machine - i.e., a two-dimensional array of processors

("cells"), operating synchronously, each of which can communicate

with its neighbors in the array. Several machines of this type,

with array sizes of up to 128x128, have actually been constructed.

Numerous IPA algorithms suitable for implementation on a cellular

array have been developed; for general discussions of this sub-

ject see (15,16]. Recently there has been some interest in using



"pyramids" of cellular arrays, of sizes 2nx2 n , 2 n-lx2,n-1....

2x2, lxl, where each cell can communicate not only with its

neighbors ("brothers") on its own level, but also with its

four "sons" on the level below and with its "father" on the

level above (15,17].

Cellular arrays or pyramids are suitable for many types of IPA

operations at the pixel level. On the other hand, some image

analysis operations, involving regions in an image, do not make use

of pixel arrays, but rather use other types of data structures to

represent regions and their relationships. For such operations,

a more general class of graph-structured cellular machines would

be appropriate, in which the cells correspond to the nodes of a

graph, and can communicate with their neighbors as defined by the

arcs of the graph. On such "cellular graph" machines see [18,

19]; on architectures corresponding to more specific types of

data structures see [20-22].

r/
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2. Pixel-level operations

A digital image is a rectangular array of pixels ("picture

elements").A pixel is usually integer-valued (most commonly, 8-

bit integers are used), but it can also be real- or complex-

valued, or vector-valued (in the case of color or multispectral

imagery). In this section we describe IPA algorithms which

operate on pixel arrays.

2.1 Point and local operations

Most of the operations commonly performed in IPA take images

into images, where the value of a pixel in the output image de-

pends only on the value(s) of the corresponding pixel, and possi-

ble of some of its neighbors, in the input image (or images).

Some examples of such operations are:

a) Contrast enhancement by grayscale transformation: the

new value of a pixel depends only on its old value, as

defined by a given mapping

b) Sharpening by (e.g.) Laplacian filtering, involving the

difference between the pixel and the average of its

neighbors

c) Smoothing by local averaging (taking an average, possi-

bly weighted, of the pixel and (some of) its neighbors),

by median filtering (using the median of the pixel and

its neighbors), by averaging of multiple images in regis-

ter, etc.



d) Segmentation by thresholding (the new value of a pixel

is 1 or depending on whether or not the old value exceeds

a threshold), or more generally, by classification of

the pixels based on a set of property values (color com-

ponents, local property values, etc.)

e) Edge (or other local feature) detection, based on comput-

ing differences between neighboring pixels

f) Expanding or shrinking: the new value of a pixel is the max

or min of the vlaues of a set of its neighbors (in some

cases, e.g., that of thinning operations, additional con-

ditions must also be satisfied before the value of a pixel

is changed)

Note that some of these operations are linear (and hence are con-

volutions), but most of them are not.

Operations of these types can be performed very efficiently

on a cellular array machine in which (ideally) there is a pro-

cessor associated with each pixel. Each processor collects the

values of its neighbors, if necessary, and then computes the

required function of these vlaues. The time required to do this

depends on the neighborhood size and the complexity of the opera-

tion, but not on the size of the image. If there are not enough

processors, we can process the image blockwise, using enough over-

lap between blocks to avoid border effects.



I.-

2.2 Transforms

Various types of integral transforms (or their discrete

versions) are often performed on images; the Fourier transform

is the most common example. Here again the output image is an

array of the same size as the input image, but there is no

longer a correspondence between their pixels. The transforms

are usually separable, so that they can be performed first row-

wise, then column-wise; the value of a pixel in the transform

is then a linear combination of the values of the pixels in that

row (or column) of the image.

When transforms are done on a conventional computer, one can

use efficient algorithms (e.g., the "fast Fourier transform")

2which require O(n log n) operations, rather than O(n ), on each

row (or column); the total computational cost for an nxn image

2is thus O(n log n) (We ignore here the problem of accessing the

image from peripheral storage, and the possible need to trans-

pose the image in order to access it efficiently column-wise as

well as row-wise.) On a cellular array machine, the rows (or

columns) can be transformed in parallel, and the time required

for each row is O(n) (each pixel must be multiplied by n coeffi-

cients, and the results must be grouped and summed); thus the

overall time is also O(n).

Many useful types of operations (e.g., convolution operations)

can be performed on an image by taking its Fourier transform,

multiplying the transform pointwise by an appropriate weighting

function (or multiplying the transforms of two images pointwise),



*and then taking the inverse Fourier transform of the result

to obtain the processed image. This too requires only O(n)

time on a cellular array machine. For convolutions involv-

ing large numbers of weights, this may be more efficient

than performing the convolution directly by parallel collec- 1

tion of information from the neighbors of each pixel.

4€
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-V..- 2.3 Geometric operations

Another class of image-to-image operations involves geometric

transformations of an image - e.g., rescaling, rotation, or arbi-

trary "warping" (to correct geometric distortions, or to achieve

registration with another image). Here the output pixels do cor-

respond to the input pixels, but not in a simple one-to-one fashion

*(even a transformation such as rotation, when performed digitally,

is not one-to-one). To perform such a transformation on an image,

one must compute, for each pixel in the output array, the corres-

ponding positions in the input array (which will not, in general,

coincide with the position of an input pixel). One must then as-

sign a value to that output position by interpolation on the near-

by input values.

The basic method of performing a geometric transformation on a

cellular array machine is to assign an output pixel to each processor,

and scan the input image over the array so that each processor

eventually sees every input pixel; the processor can thus collect

the input pixel values that it needs to compute its output value.

If it is actually necessary to scan over the entire input image,

2this method is not very efficient, since it requires O(n ) steps;

but this is hard to avoid for transformations such as rotation,

where the information needed to compute the value of each output

pixel comes from a different position, relative to that pixel, in

the image. If the needed input information is always in a given

range of positions relative to the output pixel, we need only scan

over that range, which is much more efficient. Other simplifica-

*l tions are possible for special types of transformations, e.g., for

scale changes.



2.4 Property measurement

We now consider operations that map an input image into

a (set of) property value(s), rather than into an output image.

Examples of such operations include:

a) Determining the presence or absence of a particular

pixel value in the image, or computing statistics of

the values (min, max, median, range, mean, standard

deviation, etc.)

b) Counting the number of occurrences of a particulai

value - e.g., the number of l's in a two-valued image

gives the area of the set of l's; the numbers of pixels

having each possible value define the gray level histo-

gram of the imagew the numbers of pairs of pixels in a

given relative position that have each possible pair of

values define a gray level "cooccurrence matrix" of the

image, which is useful in describing its texture. Note

that the last two examples involve sets of k or k2 pro-

perties, where k is the number of gray levels.

c) Counting the number of connected components of pixels

having a particular value (this is the standard method

of counting objects in a segmented image).

On a cellular array machine, such operations require O(n) time,

since the pixel values must be brought togther in one place in

order to count them or compute their statistics, and this requires

a number of communication steps proportional to the array diameter.



Counting connected components requires a preliminary step in which

each component is reduced to a single pixel, but this too can be

dcne intimeO(n) using a special type of shrinking process.

Statistics computation and counting can be done in time

O(log n) on a cellular pyramid machine (see Section 1). Each

pixel passes its value to its "father" on the level above it,

which counts or consolidates the values received from its sons

and passes on the results to its own father; thus after log n

steps (the number of levels), the cell at the apex of the pyra-

mid has the final desired value. Note that this process makes

use only of the vertical connections (between levels) in the

pyramid, but not of the connections within a given level; thus

it requires only a cellular tree machine having the pixels at

its leaves. Connected component counting does require hori-

zontal connections in the base of the pyramid in order to carry

out the shrinking step, which still takes O(n) time; thus a

pyramid provides no great advantage in the case of component

counting, and it is also of no great benefit in image-to-image

operations.
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*3. Region-level operations

3.1 Region representations

A region in an image, or in fact any subset of an image,

can be represented by a two-valued "overlay" image in

which the pixels belonging to the subset have value 1, and all

other pixels have value 0. This representation has the advan-

tage of being in registration with the original image, but it

has the disadvantage of requiring n2 bits of memory no matter

how simple the given region may be. Regions can be represented

in other ways which require less memory for simple regions.

Moreover, we can compute properties of regions, and derive new

regions from given ones, by operating directly on the represen-

tations. Such operations too can be implemented in parallel,

but an array of processors is no longer the appropriate archi-

tecture, since the representation is no longer array-like. In

this section we discuss some standard region representations

and the possibility of operating on them in parallel using ap-

propriate multiprocessor architectures.

A region can be defined by specifying its borders (there

is more than one border if the region has holes); for each bor-

der, this requires the coordinates of a starting point, together

with a sequence of codes defining the succession of moves from

pixel to pixel around the border (3 bits per move, since succes-

sive pixels are neighbors, and a pixel has only 8 immediate



neighbors). A natural architecture for parallel processing of

border codes [20] consists of processors connected in ring

structures, with each ring representing a border (one code per

processor). Computing properties of the regions represented in this

way takes time O(m), where m is the border length, as it would

on a sequential machine; but certain tasks that take time O(m )

when done sequentially can be done in O(m) on a ring machine -

e.g., computing the border codes of the union or intersection of

two regions, given the codes of the regions.

Another way to represent a region is to regard each row of

the image that meets the region as a succession of runs (=maximal

sequences) of 0's alternating with runs of l's. Each row is

determined by specifying the starting value (1 or 0) and the se-

quence of run lengths. Region properties, and run length codes

of derived regions, can be computed directly from the code(s) of

the given region(s). A simple architecture for processing run

length codes in parallel might consist of strings of processors,

where each string contains the run lengths for a given row.

Greater efficiencV could be achieved by allowing direct connec-

tions between strings representing adjacent rows, with the pro-

cessor representing a given run connected directly to the pro-

cessors representing runs on the adjacent rows that overlap the

given run. This approach to parallel region processing does not

seem to have been systematically investigated (but see [211).



Runs are maximal horizontal "strips" of constant-value

pixels; a more compact way of representing a region is to

use maximal two-dimensional blocks of constant-value pixels.

Each such block is defined by specifying its center and radius,

and the region is then the union of the blocks. A representa-

tion of this type, known as the medial axis transformation,

was introduced about 20 years ago; but it has not been used

extensively for region processing, because it is difficult to

compute region properties or to derive new regions from it

directly, due to the fact that the blocks overlap one anotaer

and are not organized in a systematic way. In some cases, it

may be possible to represent a region as a union of "generalized

ribbons", where each ribbon is a union of maximal blocks whose

centers all lie on a curve. Such a representation would be

much more manageable, and could be processed in parallel by as-

signing the code of each curve (i.e., the sequence of moves and

the corresponding radii) to a string of processors; this possi-

bility has not been investigated.

Another type of maximal-block region representation can be

constructed by recursively subdividing the given two-valued

image into quadrants, subquadrants, ... until blocks of con-

stant value are reached. The resulting block structure can be

represented by a tree of degree 4 (a quadtree) in which the

root corresponds to the entire image, and the sons of a node

correspond to its quadrants.. For an nxn image, where n is a



power of 2, the height of the tree is at most log2 n, and each

leaf of the tree represents a block of the image consisting

entirely of O's or l's. Region properties, and quadtree rep-

resentations of derived regions, can be computed from the quad-

tree(s) of the given region(s) sequentially by traversing the

tree(s). Quadtree-connected sets of processors can be used to

perform many of these operations in parallel very efficiently

[22]. A generalization of this approach can be used to repre-

sent a multivalued image as a union of homogeneous blocks (e.g.,

blocks of constant value, or blocks in which the standard devi-

ation of pixel values is low), where we divide a block into

quadrants iff it is nonhomogeneous.



3.2 Region properties and relations

The region representations described above are especially use-

ful in manipulating data bases of regions, e.g., in digital car-

tography. In image analysis, such representations are used for

measuring region properties and for deriving new regions from

given ones. In this section we consider a more abstract level

of processing in which regions are not completely specified, but

are represented by lists of their properties. An image segmenta-

tion can be represented, at this level, by a graph structure in

which the nodes correspond to regions, labeled with lists of

property values; and the arcs correspond to related pairs of re-

gions (e.g., adjacent), labeled with relation values (e.g., length

of common border).

A segmentation can be modified by merging pairs of regions

based on information provided by the graph representation, with-

out any need to refer to the original image; and the graph of the

new segmentation can be constructed directly from that of the

given segmentation. For example, suppose the graph contains in-

formation about the area, perimeter, and average pixel value of

each region, and the length of common border of each adjacent

pair of regions. The following are some possible criteria for

merging a pair of adjacent regions: their averages values are

very similar; their areas are very different; their length of

common border is a large fraction of (one of) their perimeters.

Their criteria can be checked directly from the graph. Moreover, if me

decide to merge two regions, we can construct the new graph directly from the old



one, by replacing the two old nodes with a single node connected

to all of the old nodes' other neighbors. The properties of

the new node can be computed as follows: its area is the sum

of the old nodes' areas; its average pixel value is the weighted

average of the old nodes' averages, weighted by their areas;

its perimeter is the sum of the old nodes' perimeters minus the

length of their common border. Finally, the lengths of common

border between the new node and its neighbors can be computed

immediately from these lengths for the old nodes; they remain

the same except in the case of a neighbor common to both of the

old nodes, where the two lengths must be added.

Region merging processes such as that just described can be

carried out in parallel using a network of processors in which

a processor is assigned to each region, and the processors

corresponding to adjacent regions can communicate directly - in

other words, the processor network is isomorphic to the region

adjacency graph. Thus each processor can examine the information

stored at its neighbors (and at their arcs) and decide whether

merging is possible. It should be pointed out that when merging

is done in parallel, the decision to merge a pair of regions

must be agreed to by both of them; if a region were allowed to

make such a decision on its own, we might find that region A

merges with region B and at the same time B merges with C, lead-

ing to an inconsistency (there are new nodes representing A+B

and B+C, but no node for A+B+C, which in any case may not be an

appropriate merge). To avoid this, only disjoint pairs should be

allowed to merge. For further discussion of parallel region-level

processing see (18].



4. Concluding remarks

This paper has reviewed some of the basic types of operations

used in image processing and analysis, at both the pixel and re-

gion levels, and has described idealized multiprocessor con-

figurations suitable for carrying out such operations in parallel.

We have seen that for pixel-level operations taking images

into images, a cellular array architecture, with processors con-

nected in a regular grid, is very natural. For image property

measurement, on the other hand, greater efficiency can be

achieved by using tree-structured connections, with the proces-

sors at the leaves of the tree. For parallel processing of

regions defined by border codes, ring-connected processors are

appropriate. Other connection schemes are suitable if the

regions are defined by maximal blocks, e.g., by run length

codes or by quadtrees. At a more abstract level, when regions

are represented by lists of properties, region merging can be

carried out in parallel using a network of processors connected

in the same way as the region adjacency graph.

Parallel region-level processing generally requires a much

smaller number of processors than parallel processing at the

pixel level. A cellular array machine for parallel processing

of a 512x512-pixel image, one processor per pixel, requires

million processors, which is not yet practical; but a region-

level processor might require only a few hundred processors

per region (depending on their complexity), or even fewer pro-

cessors to handle a region adjacency graph (depending on the



complexity of the segmentation). These numbers of processors

are quite manageable, but their interconnections pose a prob-

lem. For pixel-level processing, the images to be processed

will all be of the same size, and the neighbor interconnec-

tions are the same for every image, so that a cellular array

machine can be hard-wired once and for all. For processing

at the region level, on the other hand, the interconnections

vary from image to image, since the shapes of the regions can-

not be predicted in advance. Worse yet, we may even want the

interconnections to vary in the course of a computation, as new

regions are defined or old regions merged. This calls for some

type of reconfigurable multiprocessor architecture (19], where

ideally the reconfiguration itself should take place in parallel.

For some types of representations (e.g., border codes, for which

linked rings of processors can be used), such reconfiguration

may be relatively easy; but for other representations, requiring

tree or graph interconnections, parallel reconfiguration may not

be easy to realize in such a way as to avoid serious interpro-

cessor communication bottlenecks. As advances in hardware tech-

nology make it possible to build large multiprocessor networks,

the problems involved in designing efficient systems for parallel

image processing and analysis, both at the pixel and region

levels, will have to be addressed.
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